
D01 – Quadrature

D01ALF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D01ALF is a general purpose integrator which calculates an approximation to the integral of a function
f(x) over a finite interval [a, b]:

I =
∫ b

a

f(x) dx

where the integrand may have local singular behaviour at a finite number of points within the integration
interval.

2 Specification

SUBROUTINE D01ALF(F, A, B, NPTS, POINTS, EPSABS, EPSREL, RESULT,
1 ABSERR, W, LW, IW, LIW, IFAIL)
INTEGER NPTS, LW, IW(LIW), LIW, IFAIL
real F, A, B, POINTS(NPTS), EPSABS, EPSREL, RESULT,
1 ABSERR, W(LW)
EXTERNAL F

3 Description

D01ALF is based upon the QUADPACK routine QAGP (Piessens et al. [3]). It is very similar to D01AJF,
but allows the user to supply ‘break-points’, points at which the function is known to be difficult. It is an
adaptive routine, using the Gauss 10-point and Kronrod 21-point rules. The algorithm described by de
Doncker [1], incorporates a global acceptance criterion (as defined by Malcolm and Simpson [2]) together
with the ε-algorithm (Wynn [4]) to perform extrapolation. The user-supplied ‘break-points’ always occur
as the end-points of some sub-interval during the adaptive process. The local error estimation is described
by Piessens et al. [3].

4 References

[1] de Doncker E (1978) An adaptive extrapolation algorithm for automatic integration SIGNUM
Newsl. 13 (2) 12–18

[2] Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM
Trans. Math. Software 1 129–146

[3] Piessens R, de Doncker–Kapenga E, Überhuber C and Kahaner D (1983) QUADPACK, A
Subroutine Package for Automatic Integration Springer-Verlag

[4] Wynn P (1956) On a device for computing the em(Sn) transformation Math. Tables Aids Comput.
10 91–96

[NP3390/19/pdf] D01ALF.1

D01ALF D01 – Quadrature

5 Parameters

1: F — real FUNCTION, supplied by the user. External Procedure

F must return the value of the integrand f at a given point.

Its specification is:

real FUNCTION F(X)
real X

1: X — real Input
On entry: the point at which the integrand f must be evaluated.

F must be declared as EXTERNAL in the (sub)program from which D01ALF is called. Parameters
denoted as Input must not be changed by this procedure.

2: A — real Input

On entry: the lower limit of integration, a.

3: B — real Input

On entry: the upper limit of integration, b. It is not necessary that a < b.

4: NPTS — INTEGER Input

On entry: the number of user-supplied break-points within the integration interval.

Constraint: NPTS ≥ 0.

5: POINTS(NPTS) — real array Input

On entry: the user-specified break-points.

Constraint: the break-points must all lie within the interval of integration (but may be supplied in
any order).

6: EPSABS — real Input

On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See
Section 7.

7: EPSREL — real Input

On entry: the relative accuracy required. If EPSREL is negative, the absolute value is used. See
Section 7.

8: RESULT — real Input

On entry: the approximation to the integral I.

9: ABSERR — real Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
|I − RESULT|.

10: W(LW) — real array Output

On exit: details of the computation, as described in Section 8.

D01ALF.2 [NP3390/19/pdf]

D01 – Quadrature D01ALF

11: LW — INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D01ALF is
called.. The value of LW (together with that of LIW below) imposes a bound on the number of
sub-intervals into which the interval of integration may be divided by the routine. The number of
sub-intervals cannot exceed (LW − 2 × NPTS − 4)/4. The more difficult the integrand, the larger
LW should be.

Suggested value: a value in the range 800 to 2000 is adequate for most problems.

Constraint: LW ≥ 2×NPTS + 8.

12: IW(LIW) — INTEGER array Output

On exit: IW(1) contains the actual number of sub-intervals used. The rest of the array is used as
workspace.

13: LIW — INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D01ALF is
called.. The number of sub-intervals into which the interval of integration may be divided cannot
exceed (LIW −NPTS− 2)/2.

Suggested value: LIW = LW/2.

Constraint: LIW ≥ NPTS + 4.

14: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL �= 0 on exit,
users are recommended to set IFAIL to −1 before entry. It is then essential to test the value of
IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings specified by the routine:

IFAIL = 1

The maximum number of subdivisions allowed with the given workspace has been reached, without
the accuracy requirements being achieved. Look at the integrand in order to determine the
integration difficulties. If the position of a local difficulty within the interval can be determined
(e.g., a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) it should be
supplied to the routine as an element of the vector POINTS. If necessary, another integrator should
be used, which is designed for handling the type of difficulty involved. Alternatively, consider
relaxing the accuracy requirements specified by EPSABS and EPSREL, or increasing the amount
of workspace.

IFAIL = 2

Round-off error prevents the requested tolerance from being achieved. The error may be under-
estimated. Consider requesting less accuracy.

IFAIL = 3

Extremely bad local integrand behaviour causes a very strong subdivision around one (or more)
points of the interval. The same advice applies as in the case of IFAIL = 1.

[NP3390/19/pdf] D01ALF.3

D01ALF D01 – Quadrature

IFAIL = 4

The requested tolerance cannot be achieved, because the extrapolation does not increase the
accuracy satisfactorily; the result returned is the best which can be obtained. The same advice
applies as in the case IFAIL = 1.

IFAIL = 5

The integral is probably divergent, or slowly convergent. Please note that divergence can also
occur with any other non-zero value of IFAIL.

IFAIL = 6

The input is invalid: break-points are specified outside the integration range, NPTS > LIMIT or
NPTS < 0. RESULT and ABSERR are set to zero.

IFAIL = 7

On entry, LW < 2×NPTS + 8,
or LIW < NPTS + 4.

7 Accuracy

The routine cannot guarantee, but in practice usually achieves, the following accuracy:

|I − RESULT| ≤ tol,

where
tol = max{|EPSABS|, |EPSREL| × |I|},

and EPSABS and EPSREL are user-specified absolute and relative error tolerances. Moreover it returns
the quantity ABSERR which, in normal circumstances, satisfies

|I − RESULT| ≤ ABSERR ≤ tol.

8 Further Comments

The time taken by the routine depends on the integrand and on the accuracy required.

If IFAIL �= 0 on exit, then the user may wish to examine the contents of the array W, which contains the
end-points of the sub-intervals used by D01ALF along with the integral contributions and error estimates
over these sub-intervals.

Specifically, for i = 1, 2, . . . , n, let ri denote the approximation to the value of the integral over the
sub-interval [ai, bi] in the partition of [a, b] and ei be the corresponding absolute error estimate. Then,∫ bi

ai

f(x) dx 	 ri and RESULT =
n∑

i=1

ri unless D01ALF terminates while testing for divergence of the

integral (see Piessens et al. [3], Section 3.4.3). In this case, RESULT (and ABSERR) are taken to be the
values returned from the extrapolation process. The value of n is returned in IW(1), and the values ai,
bi, ei and ri are stored consecutively in the array W, that is:

ai = W(i),
bi = W(n+ i),
ei = W(2n+ i) and
ri = W(3n+ i).

9 Example

To compute ∫ 1

0

1√
|x − 1/7|

dx.

A break-point is specified at x = 1/7, at which point the integrand is infinite. (For definiteness the
function FST returns the value 0.0 at this point.)

D01ALF.4 [NP3390/19/pdf]

D01 – Quadrature D01ALF

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D01ALF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NPTS, LW, LIW
PARAMETER (NPTS=1,LW=800,LIW=LW/2)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalars in Common ..
INTEGER KOUNT

* .. Local Scalars ..
real A, ABSERR, B, EPSABS, EPSREL, RESULT
INTEGER IFAIL

* .. Local Arrays ..
real POINTS(NPTS), W(LW)
INTEGER IW(LIW)

* .. External Functions ..
real FST
EXTERNAL FST

* .. External Subroutines ..
EXTERNAL D01ALF

* .. Common blocks ..
COMMON /TELNUM/KOUNT

* .. Executable Statements ..
WRITE (NOUT,*) ’D01ALF Example Program Results’
EPSABS = 0.0e0
EPSREL = 1.0e-03
A = 0.0e0
B = 1.0e0
POINTS(1) = 1.0e0/7.0e0
KOUNT = 0
IFAIL = -1

*
CALL D01ALF(FST,A,B,NPTS,POINTS,EPSABS,EPSREL,RESULT,ABSERR,W,LW,

+ IW,LIW,IFAIL)
*

WRITE (NOUT,*)
WRITE (NOUT,99999) ’A - lower limit of integration = ’, A
WRITE (NOUT,99999) ’B - upper limit of integration = ’, B
WRITE (NOUT,99998) ’EPSABS - absolute accuracy requested = ’,

+ EPSABS
WRITE (NOUT,99998) ’EPSREL - relative accuracy requested = ’,

+ EPSREL
WRITE (NOUT,99999) ’POINTS(1) - given break-point = ’, POINTS(1)
WRITE (NOUT,*)
IF (IFAIL.NE.0) WRITE (NOUT,99996) ’IFAIL = ’, IFAIL
IF (IFAIL.LE.5) THEN

WRITE (NOUT,99997)
+ ’ RESULT - approximation to the integral = ’, RESULT

WRITE (NOUT,99998)
+ ’ ABSERR - estimate of the absolute error = ’, ABSERR

WRITE (NOUT,99996)
+ ’ KOUNT - number of function evaluations = ’, KOUNT

WRITE (NOUT,99996) ’IW(1) - number of subintervals used = ’,
+ IW(1)

[NP3390/19/pdf] D01ALF.5

D01ALF D01 – Quadrature

END IF
STOP

*
99999 FORMAT (1X,A,F10.4)
99998 FORMAT (1X,A,e9.2)
99997 FORMAT (1X,A,F9.5)
99996 FORMAT (1X,A,I4)

END
*

real FUNCTION FST(X)
* .. Scalar Arguments ..

real X
* .. Scalars in Common ..

INTEGER KOUNT
* .. Local Scalars ..

real A
* .. Intrinsic Functions ..

INTRINSIC ABS
* .. Common blocks ..

COMMON /TELNUM/KOUNT
* .. Executable Statements ..

KOUNT = KOUNT + 1
A = ABS(X-1.0e0/7.0e0)
FST = 0.0e0
IF (A.NE.0.0e0) FST = A**(-0.5e0)
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D01ALF Example Program Results

A - lower limit of integration = 0.0000
B - upper limit of integration = 1.0000
EPSABS - absolute accuracy requested = 0.00E+00
EPSREL - relative accuracy requested = 0.10E-02
POINTS(1) - given break-point = 0.1429

RESULT - approximation to the integral = 2.60757
ABSERR - estimate of the absolute error = 0.60E-13
KOUNT - number of function evaluations = 462

IW(1) - number of subintervals used = 12

D01ALF.6 (last) [NP3390/19/pdf]

